合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國(guó)保潔 |
美國(guó)強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 表面張力對(duì)激光空泡脈動(dòng)及潰滅特性的影響(一)
> 粉體材料潤(rùn)濕接觸角測(cè)量方法應(yīng)用于表面張力儀
> 拉脫法測(cè)量:不同性能磁性液體的磁表面張力變化規(guī)律與影響因素(二)
> 如何清理水中的油污?
> 各種表面活性劑性能大全
> 浮選藥劑的性能、組合用藥機(jī)理及協(xié)同效應(yīng)的影響因素(二)
> 有效勘測(cè)地下水污染我們?cè)谛袆?dòng)!
> 人工沖洗升級(jí)為超聲波清洗,可改善新能源電池沖壓配件的表面張力
> 脫模劑配方中加入石油磺酸鈉,可降低液體表面張力、減少界面形成
> LDH/染料復(fù)合LB膜組裝過(guò)程的多樣化和化學(xué)氣體傳感機(jī)理研究
推薦新聞Info
-
> 液體表面張力受力分析圖:原理、數(shù)學(xué)模型、應(yīng)用與實(shí)例
> 各向異性表面張力條件下定向凝固共晶生長(zhǎng)形態(tài)穩(wěn)定性(下)
> 各向異性表面張力條件下定向凝固共晶生長(zhǎng)形態(tài)穩(wěn)定性(上)
> NaOL、HZ組合捕收劑對(duì)鋰輝石礦物浮選效果、表面張力影響(三)
> NaOL、HZ組合捕收劑對(duì)鋰輝石礦物浮選效果、表面張力影響(二)
> NaOL、HZ組合捕收劑對(duì)鋰輝石礦物浮選效果、表面張力影響(一)
> 高灰細(xì)粒難浮煤泥浮選試驗(yàn):復(fù)配捕收劑最佳復(fù)配比和用量
> 微量天平的感量是多少,超微量電子天平操作方法
> 超微量分析天平應(yīng)用領(lǐng)域及實(shí)例
> ?SDS、CTAC、APG表面活性劑對(duì)磷酸鹽粘結(jié)劑表面張力的影響研究
內(nèi)分泌物在膠束中的增溶作用——結(jié)論、致謝!
來(lái)源:Kibron 瀏覽 1493 次 發(fā)布時(shí)間:2021-09-22
結(jié)論
我們通過(guò)界面張力、熒光各向異性、動(dòng)態(tài)光散射和循環(huán)伏安法在 hp-β-CD 存在下研究了 EDCs(如 NP 和 β-E2)與 HTA+ 膠束和 HTA+ 單層在電極表面形成的相互作用。 Hp-β-CD 可用于使用水中溶解度較低的化學(xué)物質(zhì)(如這些 EDC)的實(shí)驗(yàn)。 EDCs 在膠束中的溶解增加了膠束表面的剛度和流體動(dòng)力學(xué)半徑,但不會(huì)改變膠束中的極性環(huán)境。 在低 HTA+ 濃度下,HTA+ 可防止 I2 吸附在電極表面。 在電極表面形成的 HTA+ 單分子層吸附其中的 I2。 然而,在 HTA+ 膠束的存在下,I2 溶解在膠束中。 I2/I? 的循環(huán)伏安法是研究表面活性劑在固溶體界面吸附條件的非常有用的工具。 NP 與 HTA+ 具有更相似的結(jié)構(gòu),更有效地降低了 cmc。
致謝
我們感謝 H. Tsukube 教授和 T. Nagasaki 教授(日本大阪城市大學(xué))在穩(wěn)態(tài)熒光、熒光各向異性和動(dòng)態(tài)光散射測(cè)量方面提供的幫助。 PS 感謝 R. Tanaka 博士(日本大阪市立大學(xué))以及日本科學(xué)促進(jìn)會(huì) (JSPS) 的博士后獎(jiǎng)學(xué)金。
參考
References 1. Davis DL, Bradlow HL, Wolff M, Woodruff T, Hoel DG, Anton- Culver H (1993) Environ Health Perspect 101:372
2. Colborn T, vom Saal FS, Soto AM (1993) Environ Health Perspect 101:378
3. Colborn T (1995) Environ Health Perspect 103(Suppl 7):135
4. Harrison PTC, Holmes P, Humfrey CDN (1997) Sci Total Environ 205:97
5. Kuramitz H, Natsui J, Sugawara K, Itoh S, Tanaka S (2002) Anal Chem 74:533
6. Kosaka O, Sehgal P, Doe H (2005) J Surfactants Deterg 8:347
7. Kosaka O, Sehgal P, Doe H (2008) Food Hydrocoll 22:144 DOI 10.1016/j.foodhyd.2007.01.024
8. Brix R, Hvidt S, Carlsen L (2001) Chemosphere 44:759
9. Song W, Li A, Xu X (2003) Ind Eng Chem 42:949
10. Maiti NC, Krishna MMG, Britto PJ, Periasamy N (1997) J Phys Chem B 101:11051
11. Otzen DE, Oliveberg M (2001) J Mol Biol 313:479
12. Menger FM, Galloway AL, Chlebowski ME (2005) Langmuir 21:9010
13. Hassan PA, Yakhmi JV (2000) Langmuir 16:7187
14. Chiang H, Lukton A (1975) J Phys Chem 79:1935
15. Tamura K, Nii N (1989) J Phys Chem 93:4825
16. Delacruz JL, Blanchard GJ (2003) J Phys Chem B 107:7102
17. Marchetti S, Onori G (2005) J Phys Chem B 109:3676
18. Wang Y, Mendoza S, Kaifer AE (1998) Inorg Chem 37:317
19. Osteryoung RA, Anson FC (1964) Anal Chem 36:975